
NAVAL POSTGRADUATE SCHOOL
"Monterey, California

U:N 912 on

THESIS

A CHECKER-PLAYING PROGRAM

by

De Ford Eugene Cochran

December 1971

NATIONAL 8TYCHINICAL
INFORMATION SERVICE

S~dnlft*1&44 Vs, 22151

Apptoved oot pubtic 4'ewea~e; d.tkibutio.l untiited.

Unclassified
S.•unt Classification

DOCUMENT CONTROL DATA - R & D
Secursty lassifietation of title, body of abstract and indesini annotation must be entered when the overall report is celasille,"

ORIGIrN&ING ACTIVITY (corporate author) Is. REPORT SECURITY CLASSIFICATION

Naval Postgraduate School Unclassified

Monterey, California 93940 2b. GROUP

3 REPORT TITLE

A Checker-Playing Program

SODESCRIPTIVE NOTES (Type of raport and.dinclualve dates)

Master's Thesis; December 1971
9. Au TNORsis (Firet name, middle initial. lest name)

De Ford Eugene Cochran

0. REPORT DATE Va. TOTAL NC. OF PAGES 0?b. NO. Oft EFS

December 1971 71T 9
"S. CONTRACT ojf GRANT NO. dla. ORIGINATOR'S REPORT NUMERC(Sl

6. PROJIECT NO

e. S9. OTHNER REPORT NOIS) (Any other nuambers that ~,ey be asslned
this report)

d.r

I0 OISTRIGUTION STATEMENT

Approved for public release; distribution unlimited.

It. SUPPLEMENTARY NOTFS 12. SPONSORING MILITARY ACTIVITY

Naval Postgraduate School
Monterey, California 93940

12. MOSTRACT

-Thft paper describes the design of a computer program hiich plays checkers. The

program's objective was to play a respectable game without using any rote memory and

with a minimum amount of look-ahead, by relying upon static evaluations of various features

of the checker-board. An historical background of computer game-playing is presented with

detailed explanation of the important concepts as they appeared in the literature. The

techniques employed in this program are explained and compared to those used in previously

written programs. Major program processes are diagrammed and documented games

played by the program appear in the appendices.

DDO, ..1a'? (PAGEI) Unclassified

S/N 01 01- 07-611 70 Seculity Ctsstet €-1t

Unclassified
Security Classification

__
LINK A LINK U LINK C

"0.9 W ROLE WY ROLE

Checkers

Computer Game Playing

-

DDI Io-- IA3€DD .o... 1,473 71 Unclassified
• q Security C| lasificationl&) 4 o31 l071O__ ___ __ ___ ___-_ __ ___ __ __

A Checker-Playing Program

by

De Ford Eugene Cochran
Lieutenant, United States Navy

B.A. , University of Washington, 1967

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1971

Author 4 6 d
Approved by: "___ _ __ _ __ __"-__ __ __ _ __ _

Thesis Advisor

Chairman, Department of Mathematics

"/ 'Academic Dean

ABSTRACT

This paper describes the design of a computer program which plays

checkers. The program's objective was to play a respectable game

without using any rote memory and with a minimum amount of look-ahead,

by relying upon static evaluations of various features of the checkerboard.

An historical background of computer game-playing is presented with

detailed explanation of the important concepts as they appeared in the

.'".erature. The techniques employed in this program are explained and

compared to those used in previously written programs. Major program

processes are diagrammed and documented games played by the program

appear in the appendices.

2

TABLE OF CONTENTS

I. INTRODUCTION --- 6

U. COMPUTER GAME PLAYING --------------------------------- 7

A. SHANNON'S PROPOSAL FOR CHESS ---------------------- 7

B. TURING'S CHESS PROGRAM ----------------------------- 10

C. BEPF1STEIN'S CHESS PROGRAM ------------------------- 11

D. NEWELL, SIMON, AND SHAW'S CHESS PLAYER ----------- 12

E. THE GREENBLATT CHESS PROGRAM -------------------- 15

F. SAMUEL'S CHECKER PLAYER --------------------------- 17

III. ORIGIN OF THIS WORK ------------------------------------- 20

A. THE BASIC PROGRAM PRODUCED BY THE CLASS PROJECT- 20

B. PERFORMANCE OF THE BASIC PROGRAM ---------------- 25

IV. GOALS OF THE PRESENT WORK ----------------------------- 27

V. CHECKER1 --- 29

A. BASIC ORGANIZATION OF THE PROGRAM ---------------- 30

B. GOALS --- 31

C. MOVE GENERATION ----------------------------------- 36

D. PROGRAMMING -- 43

E. PROGRAM PERFORMANCE ------------------------------ 45

VI. CONCLUSION -- 47

A. SHANNON'S INFLUENCE ON DESIGN ---------------------- 48

B. PERFORMANCE FACTORS ------------------------------ 48

3

APPENDIX A Computer Chcckcr Games -------------------------- 52

APPENDIX B CheckerI On Time-Sharing System ------------------ 57

APPENDIX C Computation of Center Control And Weak Side ------- 60

LIST OF REFERENCES --- 68

INITIAL DISTRIBUTION LIST ------------------------------------ 69

FORM DD 1473 -- 70

4

LIST OF DRAWINGS

1. The Move Tree and Minimazing ------------------------------- 62

2. Alpha-Beta Tree Pruning ------------------------------------ 62

3. Standard Checkerboard Numbering System --------------------- 63

4. Modified Checkerboard Numbering System --------------------- 63

5. Pre-Analysis and Goal Generation ---------------------------- 64

6. Move Generation --- 65

7. Comparison of Move Generators ------------------------------ 66

8. Center Control Square Values -------------------------------- 67

9. Defensive Value Assignments -------------------------------- 67

5

/

I. INTRODUCTION

Artificial intelligence is the science of making computers do things

that would require intelligence if done by men. One of the first areas of

interest of artificial intelligence research was computer game-playing.

There were several reasons for this interest.

Games provide a direct contest between man and machine in a well

defined problem environment. The problem environment is sufficiently

complex to require intelligence and reasoning by human game players. In

addition, games are not difficult to represent in computer programs.

Board games, such as checkers, and especially chess, have long his-

tories. These games are governed by rules which define a problem environ-

ment. The goal of the game, to win, is clear. The rules also define the

legal moves. Each game is a sequence of moves and responses. Because

of the extreme complexity of the structure of all possible moves, humans

must use some form of strategy, or general plan, to help to simplify the

process of selecting moves. Even with the many strategies that have

been devised by men, no complete understanding of chess exists.

In theory, chess is a finite game. There are a finite number of board

positions which are connected to one another by a network of legal moves.

From any board position, a finite number of moves is available. The

game can be represented by a tree, with the board positions as nodes,

and possible moves as branches. This tree is finite, but so large that it

is not feasible to attempt to explore all possible moves fiom the beginning

6

Ij

to end. At each node in the move tree a decision must be made with only

a limited amount of information available. The decision-making process

required at each position involves evaluation, of alternate moves.

This complex but well defined problem has been programmed for play

on computers. Programs using chess knowledge and careful analysis of

possibilities, exist which are successful to the point that games have been

won in tournament play.

H. COMPUTER GAME PLAYING

Prior work in computer game playing has resulted in the development

and analysis of many important concepts. Investigation of this literature

is necessary before attempting to produce a new game-playing program.

Many elements found'in previously written papers and programs are

commo-, to almost all successful game-playing programs. Because of the

influence this body of literature has had on the present work, a brief

description of 'some of the major prior work will be presented.

A. SHANNON'S PROPOSAL FOR CHESS

In 1949, Claude Shannon published a paper which discussed some of

the problems involved in writing a chess-playing program [Ref. 1]. His

basic outline has been used in virtiially all attempts to produce computer

chess-playing programs. He proposed the following framework:

1. Consider all possible moves in the current board position.

7

I

2. Analyze each move to obtain a measurement of the value of the

move,

3. Select the best move on the basis of the values.

In considering a particular move, the program would explore all re-

sponses available to the opponent. The program would consider each move

available after the opponent's response, and so on. This process of ex-

ploring continuations is known as look-ahead.

Shannon's proposal was to explore continuations to a fixed depth in

the move tree. Because the tree is so large, this exploration cannot be

expected to reach terminal nodes. After looking-ahead to a given depth,

each of the board positions reached was evaluated.

The result of evaluation of the board postion was a numerical meas-

ure. This measure was calculated by summing weighted factors - each

factor corresponding to a feature of the chess board that chess experts

considered important. Each factor was computed for the particular

board position and then multiplied by a weight, which represenced the

relative importance of that factor. The sum of these weighted factors

was then assigned to the board position as its value.

With the look-ahead complete and the resulting boards evaluated,

Shannon then used the board values to derive a value for each of the

original possible moves. The procedure he used to work back up the tree

was called minimaxing. The minimaxing process assumes that at each

node where the program is to move, it selects the move with the maximum

8

value and at each node where the opponent is to move, the opponent will

select the move with the minimum value. This process starts at the

terminal nodes, which are board positions with values, and works back-

wards up the tree to the current board position. When all of the nodes

have been assigned a value, the program selects the move leading to the

node with the largest value.

A simple example will help to clarify this procedure. Figure 1 shows

a situation where black is to move. Black has four choices, and for pur-

poses of this example, look-ahcad is only conducted to explore white's

immediate response.

After each of black's moves, white has two possible raplies. These

eight boards have been evaluated as indicated. At each of nodes (1), (2),

(3), and (4), black assumes t'.at white will choose the move resulting in

the node with minimum value. Hence, black assumes that node (1) has a

value of minus one, node (2) a value of minus one, node (3) a value of zero,

and node (4) a value of one. Black then selects move four, since he is

assured a value of at least one.

Shannon proposed that his program could play better chess as it was

able to look farther ahead in the move tree. Minimaxing was intended

to insure that the alternate moves were considered in light of the most

likAy board position value.

9

B. TURING'S CHESS PROGRAM

A. M. Turing produced a chess-playing program in 1950 which embodied

many of Shannon's proposals [Ref. 2]. All legal moves were considered

at each node. Boards were evaluated after look-ahead, and the preferred

move was selected using minimaxing.

Turing introduced the notion of a dead board position. A position is

dead if no moves exist which will drastically change the evaluation of the

position.

In order to reduce the magnitude of the computations involved in look-

ahead, Turing only evaluated board positions that were dead. For example,

if the look-ahead terminated in the middle of an exchange of pieces, the

continuations were extended until the exchange was complete. At this

point, it made sense to compute the total value of each player's pieces

and to compare them.

The value of material was considered dominant in the evaluation of

these dead positions. If more than one branch of the tree led to the

same material balance, additional factors were considered in making the

choice between these moves. Various factors, such as mobility, control

of the center of the board, etc. , were weighted and summed to provide

the additional evaluation.

The program was hand-simulated and its only published game was weak.

However, Turing did produce the first real program for chess playing, and

led the way for further developments.

10

C. BERNSTEIN'S CHESS PROGRAM

During the late 1950's, Alex Bernste A wrote a chess playing program

which was run on a computer [Ref. 3]. Bernstein's program used tech-

niques developed previously; but rather than considering all legal moves,

the program only considered a fraction of the possible legal moves at any

board position.

The program contained routines called plausible move generators

which selected a number of moves from among all legal moves. The object

of the move generators was to find moves which somehow improved the

program's board position. The program was sensitive to several relation-

ships, or board features, which chess experts considered important in

move selection. Examples of these features are king safety, control of

the center of the board, defense of men, etc. The move generators

were executed, one at a time, until a maximum of seven plausible moves

was produced. The order of execution of the generators was based on a

priority scheme: king safety first, etc.

This selectivity allowed the program to do a more detailed analysis

and evaluation of the moves. However, the program did overlook a good

move, on occasion, because no move generator proposed it. Move gener-

ators were designed to generate moves based on information available

from expert chess players, and additional generators could be added if

needed.

11

I

The program looked ahead two moves. At each node in the look-ahead,

the plausible move generators were executed. Hence, at each node, a

maximum of seven moves was explored. A board was evaluated by compar-

ing two weighted sums - one for red and one for black. The terms of the

sums were material, area control, king defense, and mobility. Shannon's

minimaxing procedure was then used to select the best alternative.

Bernstein's program played a passable game against amateurs. The

program played stronger in the beginning and middle game than in the end

game. He proposed adding new plausible move generators and changing

some of the decision making routines to improve the weak end-game play.

None of the games played by the program was found in the literature.

D. NEWELL, SIMON, AND SHAW'S CHESS PLAYER

A. Newell, H. A. Simon, and J. C. Shaw described the NSS Chess

Player in a paper published in 1958 [Ref. 4]. The NSS Chess Player extend-

ed some of the concepts presented above. The program was intended to

describe and help understand human thinking and decision-making processes.

Because of this emphasis, the NSS Chess Player did not evaluate moves

using the weighted sums, as was done in earlier programs. The authors

did not believe this form of evaluation was present in human decision

making. The humanlike problem-solving methods employed put the program

in the area of artificial intelligence concerned with modelling human

problem-solving methods.

12

The program was written in four language levels. The first and

second levels were machine code and IPL !VI code, respectively. The third

level was a basic chess vocabulary. The elements of this vocabulary ex-

pressed concepts of the chess game. An IPL program which measured or

tested for the particular concept was associated with each element of the

vocabulary. These routines responded to particular situations, such as

men being on the same diagonal, or men bearing on a certain square, etc.

Using this vocabulary of approximately 100 routines, the chess-playing

program itself was written.

The program began play by determining the state of the game. For the

purposes of the program, the four states of the game were beginning,

early-middle, late-middle, and end. The state was derived by analyzing

various features of the present board situation. After the state had been

determined, a set of goals, appropriate to the situation was selected.

These goals were terms associated with game, such as center control,

king safety, mobility, and the lke.

The program used the state of the game to determine the priorities

among the goals. The priorities were reflected in the order of the goals

in the goal list.

Associated with each goal was a move generator. The move generator,

as in Bernstein's program, generated moves which would improve one

aspect of the board. As an example, the material balance generator would

generate a move that eliminates a threat to the program's pieces.

1 PL IV is a list processing language; one of a series of languages
developed by NeweUl, et al. 13

For each goal, there existed an analysis routine which did the look-

ahead. The resulting board was reduced to a dead position, if necessary,

and then several evaluations were performed. The board was evaluated

with respect to each goal and given a numerical value for that goal. The

total evaluation resulted in a vector of values, one for each of the goals.

The values in the vector indicated the acceptability or unacceptability

of the move for each specific goal.

The NSS Chess Player applied Turing's dead position concept in a more

general fashion than did Turing. Turing reasoned that evaluations which

occurred in the middle of an exchange of pieces did not reflect a true

measure of material. Similarly, Newell, Simon, and Shaw reasoned that

a board position was dead with respect to a given feature if no plausible

moves would result in a drastic change in the feature. If the board

position was not dead with respect to the feature, further continuations

weze explored. Using this generalization of the dead position concept,

the NSS program was designed to evaluate a board only if the board position

was dead with respect to all the board features associated with the goals.

When a board position was reached which was dead with respect to all the

features, the evaluation of the board was performed.

In order to minimax and to make a final choice of moves, the vectors

associated with each dead position had to be compared. The values in the

evaluation vector were in the same order as the goals in the goal list.

To compare two vectors, the first components were compared. The node

14

with the largest first component was selected. If two nodes had the same

value, the second value determined the choice, and so on.

This selection process gave overwhelming importance to the first

goal on the goal list. Great care was taken to insure that the goals

selected for each state of the game were relevant to the particular situ-

ation and emphasis was also placed on proper ordering of the goals.

The move selected by the program at a node was normally the first

move to meet or exceed an acceptance level. The acceptance level was

determined in the goal selection analysis. If none of the generated moves

produced a result which reached the acceptance level, the move with the

best evaluation was selected. In the normal case, only a fraction of the

generated moves were evaluated. Only when none of the moves reached

the acceptance level, did the program have to evaluate each move.

E. THE GREENBLATT CHESS PROGRAM

The Greenblatt Chess Program used plausible move generators to

limit the width of the move tree, as did Bernstein. Continuations were

explored to a certain depth and then minimaxing was used to evaluate the

alternatives. This program had a great deal of chess know-how built into

it. It contained a table of opening positions and selected replies to help

it avoid well-known traps. The designers of the program are expert

chess players themselves, and they have programmed in much of their

own knowledge of the game.

15

The program used an algorithm for discarding some branches of the

move tree, known as alpha-beta tree pruning. Application of this algor-

ithm eliminated many of the static evaluations required for standard

minimaxing. For an example of alpha-beta tree pruning, consider figure

2. Figure 2 represents part of a move tree. At the root node, black is

to move. Black first explores moving to node (1). The continuations

are explored, producing nodes (3), (4), (5), and (9) through (17). Static

evaluations are performed on nodes (9), (10), and (11). Minimaxing yields

a value of Live for node (3). Node (12) is evaluated as a nine. Since red

will choose to minimize the evaluation of node (1), and black will seek to

maximize the evaluation of node (4), nodes (13) and (14) need not be evalu-

ated. Red will move to node (3) rathqr than node (4), since a move to

node (4) allows black to gain more advantage than does node (3). Node (5)

evaluates to one. Hence, node (1) is assigned a value of one. Similarly,

nodes (8), (24), (25), and (26) need not be evaluated. Node (7) yields an

evaluation which will cause node (2) to be an illogical choice for black. If

black selects node (2), red can cause a final evaluation of, at most, minus

one for the move. This algorithm greatly reduced the amount of calcula-

tion required in move selection since only a fraction of the nodes at each

level must be evaluated.

The plausible move generators were designed to assign the highest

priority to the best move. The alpha-beta pruning was most effective

in this case. The alpha-beta pruning can reduce the search workload by

16

as much as a factor of 100. To speed the search through the tree even

more, a list of boards already considered was kept, to preclude evaluating

the same board twice.

Greenblatt's program performed well in play against humans. The

program has played hundreds of complete games and has won some games

in tournament competition. The program beats about 80 per cent of its

non-tournament opponents and in the April 1967 Massachusetts amateur

tournament, it won the Class D trophy.

The game-playing programs discussed above have all been aimed at

playing the game better by improved implementation of program logic.

All have relied heavily upon Shannon's original proposal.

F. SAMUEL'S CFECKER PLAYER

A. L. Sarmuel's checker-playing program was designed to improve its

perfonnance with experience. The program used many of the techniques

discussed above in the chess programs. It looked ahead a few moves and

evaluated dead positions. The look-ahead often extended to ten complete

moves. This level of look-ahead allowed the program to conduct an ex-

tremely detailed analysis of available moves. The success of Samuel's

program is a result of this detailed analysis.

The evaluation of the moves was accomplished by calculating the

value of a linear polynomial. The terms of the polynomial were measure-

ments of various features of the checkerboard. As in chess, these

17

features include center control, mobility, material balance, etc. The

coefficients of the terms reflected the relat~ive importance of the cor-

responding features in the overall evaluation. Minimaxing was used to

evaluate possible moves. The move with the highest polynomial value

was selected by the program.

Samuel identified two forms of learning in his program: rote learning

and generalization. The rote learning technique involved storing board

positions and their evaluations. If a stored board was subsequently en-

countered in actual play or look-ahead, the program could look-up the

evaluation of the board, rather than calculate it. This form of learning,

although not very advanced, allowed the program to look much farther

ahead than might otherwise be possible. If, for example, look-ahead

was only extended to two moves, consider the case in which the program

recognized a board it encountered at the dead position. The stored evalu-

ation of this board could very well have been based on two move look-ahead

itself. Hence, the evaluation used for minimaxing could actually be

based on four move look-ahead. Various techniques were used for cata-

loguing boards, detecting redundancies, and discarding boards.

Learning by generalization involved changing the terms and coefficients

of the polynomial. The terms of the polynomial were obtained by measur-

ing features of the board position. There was a total of 38 features

available to the program. Of these, only 16 were used ih the polynomial at

any one time. The remaining terms were kept on a reserve list.

18

The generalization learning technique allowed the program to change

coefficients in the polynomial when the values produced by the polynomial

were not considered to accurately reflect the value of the board. The

polynomial was tested by first applying it to each board position encoun-

tered in actual play and saving the value obtained. Look-ahead was then

performed to a given depth. Using minimaxing, the program computed a

backed-up evaluation of the board position. This backed-up value was

compared to the value computed without the look-ahead. The value obtained

using look-ahead was considered to be a more accurate measure of the

board position's value. If the initial value was greater than the backed-up

value, the positive coefficients in the polynomial were reduced and the

negative coefficients were increased. If the initial value was less than

the backed-up value, converse action was taken.

After each move, the program determined the term in the polynomial

with the lowest coefficient. This term had the least effect on the value

of the polynomial. If a particular term occupied this position for eight

moves, the term was transferred to the bottom of the reserve list.

The term at the head of the reserve list was transferred into the poly-

nomial and given a coefficient of zero. The coefficient was then altered

during play as described above. This learning technique provided the

program with the ability to adapt to the play of each opponent.

The rote learning technique provided improvement in the beginning

and end-game play. The generalization technique improved middle-game

19

j

play. The performance of Samuel's checker player indicated that learning

techniques could be programmed to help the computer learn to play games

better.

III. ORIGIN OF THIS WORK

This work is a continuation and extension of a class project begun in

July, 1971. The project was undertaken for an advanced topics in Computer

Science course taught at the Naval Postgraduate School, Monterey,

California. Thirteen students participated in the project. The goal of

the project was to produce a program to play an interesting game of

checkers against a human opponent. The design of the program was to

draw heavily upon work done previously in the field of computer game-

playing. In addition to consulting the literature on computer game-

playing, some initial research into the literature dealing with the game

of checkers itself was required to acquaint the designers with terms

used in describing and playing the game.

A. THE BASIC PROGRAM PRODUCED BY THE CLASS PROJECT:

The program consisted of a basic checkers vocabulary, similar to

the vocabulary used in the NSS Chess Player, and playing routines. The

vocabulary routines measured various features of a board position, such

as mobility, and provided the basic machinery needed to represent the

board. This basic machinery manipulated the board to reflect moves or

jumps.

20

The playing routines. used the vocabulary to select a subset of all

legal moves for consideration, to reduce the alternatives to dead positions,

to evaluate the dead positions, and to select a move. The program was

goal oriented in the same sentse that the NSS Chess Player was goal or-

iented. The first. step in program flow was to select and order a set of

goals. These goals were associated with important features of the board

such, as mobility, defense of men, etc. Associated with each goal was a

move generator which selected moves to improve the board feature assoc-

iated with the goal.

The program did not have 'the ability to learn. Any improvement in

performance war the result of additional programming.

Each static board was evaluated with respect' to material condition,

center control, and mobility. A vector containing these three elements,

plus a weighted sum of the three elements, constituted the final eval-

uation.

1. Goal Selection and Ordering

The first step in goal selection and ordering was to determine

in which of four stages 0f the game the program was playing. The number

of pieces on the board determined the stage of the game as follows:

'STAGE NUMBER OF PIECES

Beginning '19 to 24
Early middle 13 to 18
Late middle 7 to 12
Erd Ito 6

I 21

For each stage, a relative importance, or weight, was assigned

to the board features of mobility, center control, and material balance.

These weights were used to compute a weighted sum of relative mobility,

center control, and material balance, called advantage. This value was

then used to select a list of goals. The order in wh:ich the goals appeared

in the list reflected the relative priorities assigned to the goals. The

value of advantage was significant in this selection process since it indi-

cated the relative strength of the program's position. If, for example,

the value of advantage was low in the beginning stage, a list of goals

which gave high priority to gaining control of the center would be selzcted.

Each of the four goal lists was a permutation of the four goals:

MOBILITY, CENTER-CONTROL, GET-KING, and CAPTURE. The prior-

ities were assigned to the goals based on information obtained from pub-

lished literature on checkers. The stage of the game an3 the overall

evaluation of the program's situation were used to determine the selection

of the goal priorities.

In addition to the goal list, the program also saved the value

of advantage and the three weighted board features used in computing

advantage. These four values constituted the vector evaluation of the

present board. This vector was used later for evaluation of moves.

Positive values indicated black dominance, negative values indicated red

dominance, and zeros indicated an even balance in the features associated

with each of the vector elements.

22

WT

After the basic goal list was selected, additional goals were

added to the list which allowed the program to test for and respond to

particular situations. The goals SHOT and KIL were always added to the

goal list. The move generator associated with SHOT searched the board

for a specific pattern of pieces. If this pattern was present, the program

could move to sacrifice one piece in exchange for tVe opponent losing two.

This advantageous exchange is known as a two-for-one-shot. The move

generator for the KIL goal recognized patterns Which allowed the program

to capture an enemy piece which was not well defended.

If the board analysis during goal selection determined that a

threat to one of the program's pieces existed, the goal BLOCK was placed

on the goal list. The move generator associated with BLOCK searched

for moves to eliminate the threat. If a jump was available to the pro-

gram, the goal JUMP was given highest priority on the goal list because

the rules of checkers require that available jumps be taken.

The list of six to eight goals and the vector evaluation of the

present board were used in the move generation phase.

2. Move Generation

Each goal (except JUMP) had a move generator associated with

it. These move generators investigated some subset of all legal moves

and selected the move which resulted in the most improvement in the

appropriate board feature.

23

The move generators investigated moves by making the move,

reducing the board to a dead position, and then analyzing the resulting

board position. When the dead position had been evaluated, the move

generator compared this evaluation with the evaluation of the present

board. The generator saved the best board evaluation and the move ex-

ecuted to reach that board. When each move evaluation was compared to

the present board evaluation, the move was rejected if material was lost,

other than in even exchanges, or if the mobility or center control features

were drastically degraded by the move. If none of the moves investigated

improved the board feature associated with the goal, the move generator

indicated this fact and the generator for the next highest priority goal

was executed.

As soon as one of the move generators found an acceptable move -

that is, one that sufficiently improved the goal being considered - the

program executed the move.

3. Analysis and Evaluation

Board positions encountered after a proposed move were analyzed

to determine if the opponent would now be forced to jump. If this was

not the case, the board was considered dead, and the evaluation was per-

formed. If the opponent did have a jump, the jump was executed and the

board was analyzed to determine if the program was now forced to jump.

This process continued until a node in the tree was reached at which one

player had a choice to make. This board was then evaluated to measure

the effect of the move.

24

The evaluation performed on the dead position was accomplished

using a section of the goal generation routine. The dead position was

evaluated with respect to relative mobility, center control, and material

balance. The weighted sum, advantage, was also computed. The various

components of the vector were then compared with those of the present

board's evaluation.

B. PERFORMANCE OF THE BASIC PROGRAM

The program could play the game as long as moves which were accept-

able to one of the move generators were available. The basic machinery

for moving, jumping, measuring features of the board, etc. , was coded and

de-bugged for many situations. Portions of several games were played

by students against the program. After a fair beginning game, the pro-

gram soon lost direction and was easily beaten.

Analysis of the ordering of the goals and the moves selected by the

program in these games revealed several areas in which program perfor-

mance could be improved. The move generators were not sensitive to

improvement in material balance. If, for example, the dead position

resulting from a move proposed by the mobility move generator did not

increase the number of safe moves available to the program, the move

was rejected, even if it would result in the capture of enemy pieces.

Some of the move generators did not explore all possible means for ac-

complishing the goal. For example, the move generator for the goal

BLOCK only investigated moves to block the jump. It did not consider

25

moving the threatened piece out of danger. If each of the move generators

was executed, but none of them found an acceptable move, the program

would resign. In many cases, when the program resigned it was not in a

completely hopeless situation.

Because the program was a group project, and coding was done by

many programmers, there were many inefficiencies in the program coding.

Because of the complexity of the program, the interaction between

the basic elements was not always clear. Several bugs existed in the

interaction of various routines, which had a drastic effect on the pro-

gram's performance. For example, the program would occasionally com-

pare the vector evaluations of several moves and make an obviously

erroneous selection. The reason for this error lay in the interaction

between the move generator and the goal generation routine. As mentioned

above, evaluations of dead positions, after a proposed move, were accom-

plished using the goal generation routines. The calculations performed

were based on the stage of the game. If a move resulted in exchanges,

sometimes the stage of the game would be changed. The weighting factors

used to calculate the elements of the evaluation vector would then change.

Hence, direct comparison of vector elements could lead to wrong con-

clusions and selections.

26

IV.. GOALS OF THE PRESENT WORK

The basic goal of this work was to write a checker-playing program

which decides on the same moves that a human player selects, and for

the same reasons. The thrust of the subsequent research and programming

was to better implement concepts presented by other authors and to

improve the heuristics already employed in the program. Emphasis was

also placed on producing a more efficient program flow and locating and

resolving logical flaws and omissions.

Another goal of the work was to provide additional goals for move

generation. Improvement in the goal definitions, analysis, and the goal

selection process was considered vital to improve the program's play.

Several analysis routines required additional modifications to cope with

situations encountered in play that were not considered in the program.

Games were then to be played to test and improve the middle and end-game

performance.

Performance of the basic program indicated that a modest amount of

look-ahead could greatly reduce the probability of selecting a poor move.

The look-ahead would enable the program to detect a move which met all

the criteria for selection except that with the resulting board position.

the opponent was able to make a move which resulted in a material loss

for the program.

27

To detect such situations prior to move selection, a new routine was

written which performed one ply look-ahead. After each of the program's

moves was proposed, the routine proposed each of the opponent's replies

and reduced the board to a dead position. If material had been lost, other

than in an exchange, the routine flagged this move by the program as

unacceptable. Using this routine during the analysis phase of move gen-

eration also ruled out sacrificing a piece to improve a feature of the

board. Because the program did not base move selection on previously

selected goals or moves, it was unable to use sacrifices to produce strate-

gic gains in any case. This one ply look-ahead did not restrict the gener-

ation of moves, but it did provide a defensive measure to detect some

poor moves.

Although the most satisfying method of competition is interactive,

the time-sharing system at the Naval Postgraduate School was unable to

process the language selected for this program. In early October 1971,

an addition to the time-sharing system made interactive play possible.

The implementation of this interaction became a secondary goal of the

work.

28

V. CHECKER 1

CHECKER 1 is a checker-playing program written for use on the IBM

360/67 installed at the Naval Postgraduate School, Monterey, California.

The program is written in the list processing language LISP 1.5 [Refs. 7

and 8].

The basic organization of the program is similar to that proposed by

Shannon, with the addition of selectivity in move generation, and analysis

of dead positions. The program uses goals to help select moves for in-

vestigation as did the NSS Chess Player. Numerical evaluations of the

present board configuration provide a means to determine what feature

of the game should be improved. The program then considers various

plausible moves and selects a move based on the goal determined to be

most critical. Selection is accomplished by evaluation and analysis of

dead positions resulting from proposed legal moves.

Some convention for board representation had to be selected to allow

communication between the human player and the program. The standard

checkerboard numbering system numbers the squares as shown in Figure 3.

A modified numbering system, as in Figure 4, is used in communicating

with the machine. This numbering system, as described by Samuel [Ref. 6],

numbers the squares from one to thirty-five, omitting nine, eighteen, and

twenty-seven. This numbering system is used internally by the program

to compute possible moves.

29

With the modified system, a black man can move to squares numbered

four higher, or five higher, than the square it is on. A red man can move

to squares numbered four or five lower than the square it is on. Kings can

move both ways. If adding four or five to a square results in nine, eighteen,

twenty-seven, or a number greater than 35, the new square does not exist.

Similarly, if the subtraction yields nine, eighteen, twenty-seven, or a

number less than one, the square does not exist.

Modification of the numbering system also facilitates calculation of

jumps. A man can only jump into squares minus eight, plus eight, minus

ten, or plus ten from the square it is on. The test for existance of a

square is the same as for moves. All board square numbers referred to

in this paper are from the modified system.

A. BASIC ORGANIZATION OF THE PROGRAM

The program is organized into four steps. First, the program orders

goals from the goal set. The ordering is dependent upon the stage of the

game and measurements of center control, mobility, and material condi-

tion. These goals are independent and goals may be added or removed

without affecting the other goals. Plausible moves are then generated,

proposed, and evaluated. The evaluation includes analysis of dead positions

and measurements of board features. The generation phase either yields

an acceptable move or indicates that the program cannot improve the

30

goal, given the present situation. If no move is produced, the program

then considers the next goal on the list of goals.

If all the move generators associated with the goals on the goal list

fail to produce an acceptable move, the move generation process calls

upon two other move generators. The first generator attempts to produce

a safe move for the program. If no safe moves exist, the second genera-

tor investigates available sacrifices. Men are sacrificed only if the sacri-

fice will open new avenues toward goal achievement. Otherwise, the

program resigns.

B. GOALS

Nine independent goals are presently used. Two other goals are built

into the selection process. These two goals are only used if all efforts

to achieve the other goals fail.

After determining the stage of the game by counting the total number

of pieces on the board, the program assigns a priority to each goal. The

priorities are represented by the order in which the goals appear in the

goal list and were derived from analysis of published checkers games,

played by experts. (Board evaluations used in this analysis were hand-

simulations of the program's various evaluation routines.) The ordering

of the goals depends on the stage of the game, measurements of various

features of the board, and whether or not a jumping situation exists for

either player.

31

In each stage, if the program has at least two possible safe moves,

the mobility goal is given low priority. If the program is behind in

material balance, the capture goal is given priority, while the exchange

goal is not desired.

Throughout the first three of the four stages, center control is given

priority if the program does not have at least a slight advantage. The

goal associated with advancing men towards kings row increases its priority

in each of the first three stages of the game.

In move generation, the program will accept even trades in material

to improve the given goal. Since kings have been given twice the value of

men, the program will trade two men for a king, or a king for two men.

A brief definition of each goal and the criteria used in ordering the

goals follows. The goal generation process is diagrammed in Figure 5.

I. l~ump

JUMP is the highest priority goal. If the program finds that it

is in a situation which forces a jump, this goal is selected. Further goal

generation is terminated.

2. Block

This goal is first on the goal list if the opponent can jump one

of the program's pieces. The program first attempts to move another

piece, so as to block the jump. If a block is not possible, the program

attempts to move the threatened piece to a safe position. If this is

32

not possible, an attempt is made to move another piece to cause the

opponent's jump to result in an exchange.

The block is considered the preferred action, since blocking

moves consolidate the men nearest to the enemy for mutual support. If,

rather than blocking, a piece is moved out of danger, he is frequently

isolated from support if future threats arise.

3. Shot

The goal SHOT appears on the goal list to activate a search for

certain pre-stored patterns of pieces which allow the program to sacrifice

one piece in exchange for capturing two enemy pieces. This move is refer-

red to as a two-for-one shot in checkers literature. The stored patterns

do not match all those possile for a two-for-one shot, but only a certain

number occurring near the center of the board.

4. Kil

The goal KIL allows the program to notice and capture insuffic-

iently protected pieces which the opponent has advanced near kings row.

The move generator looks for a lone enemy man in the program's third

row. If there is a man in the third row, and if he can be forced into a

situation which results in the program capturing this man, with no ex-

change resulting, the forcing move is generated.

5. Center Control

Control of the center is considered to be control of squares

15, 16, 20, and 21. A piece contributes to center control if it occupies

33

6 1 Im m l _ - _ - -- __ I _ - |_ _ _ - _ -.. . . -..

'R mw im ! tq"

these squares or the supporting squares (numbers 10, 11, 12, 17, 19,

25, 26). The value of center control is comnputed as follows. The values

of the pieces occupying the center control squares are multiplied by four

and summed. The values of the pieces occupying the supporting squares are

added to the sum to yield the value of center control. Black men hiave a

value of one, black kings have a value of two; red men a value of minus

one, and red kings a value of minus two. A center control value greater

than zero indicates a black advantage; zero indicates even control; and

less than zero indicates a red advantage. 2

During the beginning and early-middle stages, the program chooses

CENTER-CONTROL as the primary goal when the opponent has the advan-

tage or the control is even. With mere than twelve pieces on the board,

control of the center is an excellent deterrent to the opponent getting a

king. The opponent's mobility is greatly reduced if he does not control

the center.

6. Mobility

The overall strategy of checkers is to not allow the opponent

to move. Because of this, the program must be concerned with how many

safe moves are available to it. Each time the program begins goal gener-

ation, it determines its mobility. If less than two safe moves are avail-

able, the MOBILITY goal is given top priority. This goal becomes

increasingly important as the game moves toward the end.

2 Appendix C illustrates the square values for computing center

control.

34

7. Get-rking

in the middle game, the program, attempts to take the offensive

by moving ahman into kings row. If con'trol of the center and mobility

are not critical, the GET-KING goal is given priority. The move-gener-

atdr for the GET-KING. goaf scans the board to determine the side on

which the opponent appears the weakest. The move which advances a man

as close as possible to kings row on tha opponent's weak side is considered

the best move toward getting a king. A mo~~e to the strong side is con-

sidered if no M~ove on the weak side advances a man toward kings row.

'Exchanges which result in a man being moved closer to kings row are

acceptable.

8.. Exchange

If the program has a material advantage in the late-middle game

or end game, it will seek to make exchanges to reduce the game to a

výinning situation. in the beginning and early-middle game, exchanges

are sought to speed the game to later stages. If at any time the program

is a t a material disadvantage, the EXCHANGE goal is relegated to a

position only above sacrificing a man. When a player is behind in material,

exchanges degrade his position by moving the game closer to an end-game

situation assuring a win for his opponent.

9. Capture

The CAPTURE goal is designed to generate moves which contribute

to jumphing an enemy pieca. The program can accomplish the CAPTURE

35

asclseasposil to kig ro n h ppnn'swaksd o sidere

goal in two ways. The first is to reduce the opponent's mobility. The

second is to place one of the opponent's men in a position forcing a move

or block to prevent loss of the man. This goal is considered most impor-

tant in late-middle game and end-game play. Use of this goal in the end

game will lead to a win by denying the opponent the ability to move safely.

If the program is at a material disadvantage, this goal is given higher

priority. Accomptishing this goal can eventually lead to regaining material

balance - or even an advantage.

C. MOVE GENERATION

Mo,/e generation is accomplished by investigation of various moves

which may help improve the goal selected. The move generator for each

goal proposes alternative moves and then evaluates the move by measuring

features of the resulting dead position. The evaluation determines how

the goal was affected and the change in other pertinent board features.

Each move generator follows the same basic outline in generating

moves. The four steps are:

1. A subset of all legal moves is selected for investigation.

2. Each selected move is proposed.

3. The resulting board is reduced to a dead position.

4. The dead positions are evaluated and compared.

Methods for selection of plausible moves for consideration vary with

the goal involved. The move generator for CENTER-CONTROL only

36

considers moves which improve the value of center control. The move

generators for CAPTURE and MOBILITY consider all legal moves. The

move generator for GET-KING considers only one side of the board

at a time. The move generators for BLOCK, KIL, and SHOT need only

look at a small part of the board for appropriate moves.

Once a set of moves has been selected for investigation, each move

in the set is proposed. The moves are proposed by actually executing

them on the present board configuration. After analysis and evaluation

of the new board, the board is restored to its prior configuration.

When a move is proposed, the move generator performs analysis of

the board to determine if the board is now a dead, or static, position.

A static position is defined as one in which the player ubo now is to move

has a choice to make - in other words, no jumps are forced. If the posi-

tion is not static, the forced jumps are performed until a static board

results. This idea of a static position is identical to Turing's concept

of a dead position. Unlike the NSS Chess Player, which considered a

generalized version of this concept, the program only considers forced

jumps in reducing the board to a dead position.

The algorithm for final choice of a move depends upon which move

generator is executed. Each generator has certain criteria for deter-

mining if a given move improves the appropriate feature of the board.

The final choice is made either by finding the first plausible move that

produces an improvement, or by selecting the move that prodvces the

37

most improvement. Figure 7 compares the move generators and indicates

the moves that are generated and how the final choice is made. The move

generators are described below.

1. Block

The BLOCK goal requires that no jumps are immediately available

to the opponent after the blocking move is executed. Each move which the

program can make to block the jump is considered. The first move that

does not open another threat is selected.

In the event that no block is possible, the program determines

whether the threatened piece has a move available. if any such moves

exist, they are proposed and tested as above.

When there is no way to prevent the loss, moves are proposed

which place a piece adjacent to the blocking square. These moves usually

result in either an exchange or a double jump for the opponent. Each is

proposed, and the first move resulting in an exchange is selected.

If there is no way to prevent loss of material, the goal is

abandoned, and the next goal processed.

2. Shot and Kil

The move generators for the SHOT and KIL goals search the

current board for pre-stored patterns of pieces. The generator for

SHOT attempts to match patterns which allow the program to get a

two-for-one shot. The generator for KIL searches for patterns in the

program's first, second, and third rows which will allow the program

38

to capture an unprotected enemy piece. Each generator produces the

move appropriate to the first pattern it recognizes. If none of the pre-

stored patterns match on the board, the generators indicate failure,

and the next goal on the list is processed.

3. Center Control

When generating moves for center control, after each proposed

move, the board is reduced to a static position. The value of center

control at this static position is compared with the previous best value.

If a move does improve center control, and does not result in either a

loss of material or degradation of mobility below two, this value, and

the associated move, replaces the previous best value.

When all possible moves into the center control squares and

the supporting squares have been proposed, the best value contains the

program's choice. This choice is the move resulting in the maximum

center control value. If no moves meet the criteria, the next goal is

investigated.

4. Mobility

Moves generated by the generator for MOBILITY are defensive

in nature. All possible moves are considered. The final choice is that

move which improves mobility the most, without loss of material. The

generator will accept exchanges to improve mobility, but sacrifices for

mobility are only accepted by the sacrifice move generator..

"39

5. Capture

The move generator for the CAPTURE goal considers all legal

moves. After each move is proposed and the resulting board is reduced

to a static position, the opponent's mobility is measured.

If a proposed move creates a threat to an enemy piece, this

move is analyzed further. The program assumes that the jump is per-

formed and then investigates all possible replies that the opponent can

make. If this look-ahead indicates that the opponent cannot gain material,

the move is accepted. As soon as an acceptable threatening move is

found, it is selected. If no threatening move which meets the criteria

is discovered, the move which reduces the opponent's mobility the most,

without degrading material condition, is selected.

6. Exchange

The move generator the EXCHANGE goal searches for a move

which will result in an even exchange of material. The generator con-

siders each legal move. The first move which results in a static position

with less men on the board and the same material balance is selected.

7. Get-king

.The move generator for the GET-KING goal first attempts to

move a man directly into kings row. If no man is in position for such a

move, the generator attempts to determine the opponent's weak side of

the board. Squares on the board are assigned values corresponding to the

value derived in defense of kings row by occupying the squares. 3 The

3 Appendix C illustrates the numbering scheme for computing the
opponent's weak side.

40

values of all the squares occupied by the opponent are summed for each

side of the board. The side with the lowest defensive value is ccnsidered

to be the opponent's weak side. The generator assumes that the program

is most likely to penetrate the opponent's defense on this side.

The generator first proposes advancing the man already closest

to the kings row on the weak side. The move is proposed and the board

is reduced to a static position. If the man is still on the square it moved

to, and material balance is unchanged, the move is accepted. If the move

is not acceptable, the next closest man on the weak side is considered for

advancement.

Considering moves in this order allows the program to continue

with some sense of direction toward getting a king. Often the same man

is advanced several moves in a row. If conditions on the weak side change,

however, and another man is in a better position to reach kings row,

the generator will select the better move. One draw-back to successively

moving the same man is the possibility of isolating hint from defensive

support. This situation has not occurred frequently in play. Moves

which place the advancing man on the edge of the board (squares 5, 13, 14,

22, 23, and 31) are more likely to cause the man to be trapped. These

squares are only moved into when moves nearer the centerline of the

board are not acceptable.

The first move to meet the criteria is selected.

41

8. Safe-move and Sacrifice

If, after all the goals have been processed, the program qannot

find a move which meets the requirements of one of the goals, the SAFE-

MOVE move generator selects one of the safe moves available to the pro-

gram. Safe moves are actually detected previously by the routine which

computes mobility. This routine saves one of the safe moves for the

move generator for the SAFE-MOVE goal.

In the event that no safe moves exist, the SACRIFICE move

generator will select a move to sacrifice a man. The sacrifice move

selected is the move which results in a dead position containing at least

one safe move for the program and results in the smallest loss in material.

Sacrifices which do not result in safe moves at the dead position are re-

jected. The program resigns if this generator fails to produce a move.

9. Summary

In summary, the final choice of a move by the move generator is

either the move producing the most improvement in the associated goal,

or the first to produce improvement. The center control and mobility

move generators are also sensitive to moves which produce a gain in

material for the program. Time did not permit including this feature

in the other move generators.

If a move is proposed to improve center control or mobility,

and a material gain results at the dead position, the move -is selected

regardless of the effect on center control or mobility. Likewise, if a

42

move results in a loss of material, except in an exchange, the move is

rejected unless the SACRIFICE move generator is executing.

At one point in the development of the move generators, they

used one ply look-ahead to analyze each of the moves proposed. Because

of the excessive time involved in this analysis, only the CAPTURE move

generator retains this feature. Even in this generator, only moves which

place an enemy piece in danger are so analyzed.

D. PROGRAMMING

All programming associated with this work has been done using the

LISP 1. 5 Programming Language [Refs. 7 and 81. LISP 1.5 is a list

processing system based on the formal LISP language, using an inter-

preter for evaluating LISP expressions. The language is fully recursive

and particularly well suited to manipulation of strings and lists.

The first step in programming was to code definitions in LISP for

various words and phrases associated with checkers. Basic machinery

was developed to change the board to reflect moves and jumps, and to

measure mobility, center control, and material condition. The move

generation phase was then coded, using the definitions of the goals to

determine criteria for acceptance of a move, and the previously coded

definitions associated with each goal.

The coded definitions are similar to the chess vocabulary of Newell,

Simon, and Shaw, in that a function, called with the proper color and

43

board, will return information relevant to goal and move generation. For

example, one function, called ALL-MOVES, returns all legal moves a

player has available.

With this vocabulary of functions, the goal and move generation

functions operate on a higher language level, by doing their analysis and

evaluation using these definitions.

Near the end of the project, a new version of the LISP programming

system for IBM S/360 Operating Systems was received from IBM [Ref. 9].

The new version compiled machine code to perform the manipulations

and was compatible with the time-sharing system installed at the Naval

Postgraduate School.

The overall supervisory routines were altered to make the checker -

playing program interactive. Some changes were also required in the

remaining sections of the program to insure compatibility. With these

changes effected, the program was then used interactively for play

and program de-bugging.

Considerable time and effort was expended to implement the program

on the time-sharing system. Some difficulty was experienced late in the

work which precluded a detailed analysis and comparison of the processing

performance of the program on the two systems. It was expected that

the time-sharing system, using compiled code for execution, would require

considerably less processing time per move than the interpreter system.

44

Because of the time required to perform needed changes to the program

to make it compatible with the time-sharing system version of LISP,

no data is available for comparison at this time.

E. PROGRAM PERFORMANCE

The program has played five games from beginning to end. The

games show that improvement has been made in several areas of play.

The processing times and free storage requirements for the program

have been reduced, and the program is able to cope with many more

situations than the original program could.

The original program played three games. These games, although

very weak in the middle and end game, were helpful in bringing to light

areas that needed improvement. The beginning was the best part of the

game played by the program, but this was over-directed toward the

CENTER-CONTROL goal, which limited the aggressiveness of the pro-

gram.

The original player required between 30 and 90 seconds of processing

time for a single move in the beginning game. In the middle game, moves

frequently would require over four minutes of processing time; especially

when the program could not generate moves for the first or second goals

on the goal list. Processing times in the end game were near two minutes,

but in many cases the program could not find an acceptable move for

any of the goals, and conceded when the situation was not hopeless. At

45

that time there were no generators for exchanges, safe moves, or sacri-

fices. These processing times were achieved using 34996 words of free

storage for LISP.

Two full games have been played using the present program and the

batch (interpreter) system. Processing times are now between 20 and 60

seconds for each move in the beginning and end game situations. Averages

for the middle game are slightly higher, but seldom does a move require

more than 90 seconss of processing. These times were achieved using

24446 words of free storage.

This improvement in the processing times is a result of more efficient

coding and more reasonable ordering of goals in the goal generation phase.

Near the very end of the game - say with only three or four men left -

processing times may rise to near three minutes. This problem can be

reduced by elimination of some goals during this stage of the game.

Appendix A contains sections of games that were played, with comments

as to what move generator selected the move, and moves that may have

been better.

The program plays best in the beginning game. Exchanges are used

for accomplishing goals more than they are in published games by experts,

but the exchanges result in the most improvement in the associated board

features.

The middle game lacks the direction necessary to press on toward

strategic gains, because the program does not remember previous goals

46

or moves. Each goal generation - move generation - analysis - choice

cycle is performed with only the present board position as context.

The end game is weak - especially when the program has the material

advantage and therefore has the potential to win. The primary method

the program has to recognize progress toward a win is measurement of

the opponent's mobility. A reduction in the opponent's mobility is seen

as advancement toward a win. If, as in game four in Appendix A, the

program's pieces are separated from his opponent's pieces, such that no

move will reduce the opponent's mobility, the capture goal cannot be

accomplished. The move selected by the program will not necessarily

move a piece closer to the opponent.

Overall, the program can play an-interesting game, but cannot push

on to a win. More detailed analysis can help in this respect. Addition

of a goal to close with enemy pieces if certain circumstances exist

could also help the and-game performance. With this goal, in situations

such as in game four, the program would be able to approach the opponent

and then find moves to restrict his mobility - forcing the win.

VI. CONCLUSION

The checker-playing program described in this paper is based on

Shannon's original proposal for playing chess. The program embodies

many of the ideas presented by researchers in computer game playing -

with the obvious omission of extensive look-ahead. The performance of

47

this program, along with that of previously written game-playing pro-

grams, yields information supporting several conclusions about game,

playing in general and CHECKER 1 in particular.

A. SHANNON'S INFLUENCE ON DESIGN

Almost every attempt to write a computer program to play chess

or checkers has been patterned after Shannon's original framework. To

date, no program has been produced which can play these games well enough

to consistently beat excellent human players. However, as workers have

implemented Shannon's proposal better and built on other concepts in the

literature, program performance has improved. Some programs, such

as the Greenblatt Chess Program, have been successful against fair to

good players, but none has achieved the success that many people consider

possible. This could be because of incomplete implementation of Shannon*s

proposal or because his design is inadequate to produce high quality play.

B. PERFORMANCE FACTORS

The most successful game-playing programs contain considerable

built-in game knowledge. Using stored openings and tricks of the game

is one method that program designers have used to improve the perform-

ance of their programs.

All of the game playing programs discussed in this paper use some

scheme to produce a numerical evaluation of a board position. The evalu-

ation is based on measurements of various relevant features of the board

48

PRP*N I OR I I, _M MmI"WM Mm

position. If the figure of merit assigned to the board is to be of worth

in selecting moves, many features of the board should be considered and

the entire spectrum of information derived from the situation should be

used. Programs which reduce this information to a single figure, as

Samuel does, or keep the information distinct and then allow one feature

to totally dominate move selection, as in the NSS Chess Player, may not

be making full use of the available information.

Although CHECKER1 does not measure many features of the board,

move selection decisions are based on several of the measurements. The

program makes use of all the information obtained about the board features

it measure during analysis.

An integral part of Shonnon's chess plkying design is the use of look-

ahead. He proposed that the farther the program looked ahead, the better

the program could play. Extending the look-ahead deeper into the tree

gives the program more assurance that its evaluation of a move is reason-

able. However, the value derived from look-ahead is based on the ability

the program 6as to perf£orm good static evaluations at the terminal nodes

of the look-ahead. If these board position evaluations are accurate, the

look-ahead will actually introduce information not available from the

original board position. Without good evaluations, the look-ahead value

is greatly reduced.

A program using no look-ahead could be expected to play chess or

checkers well if it were able to analyze the current board configuation

49

sufficiently. No look-ahead implies that the program can calculate

directly the best move available to the player. This move could be deter-

mined by careful analysis of the board position. Plausible moves would be

proposed and the resulting board position reduced to a dead position. This

board would then be analyzed for move selection. Since the opponent's

replies would not be investigated, this procedure would not be- true look-

ahead.

A program using no look-ahead would require a number of relevant

board feature measurements and the ability to recognize the relative

importance of each. The program would contain much specific informa-

tion about the game, including stored moves obtained from the literature

of the game.

CHECKER1 only uses look-ahead i, particular applications of the

move generator for the CAPTURE goal. The look-ahead is used to detect

situations wbhch could be recognized using a pattern matching technique.

Be'ause this look-ahead can be replaced without any effect on CHECKERI's

performance, the program effectively contains no look-ahead. The ability

CHECKER1 has to select reasonable moves supports the assertion that

checkers can be played without look-ahead.

The program is capable of play that is at least interesting, using a

very limited set of board features. Adding new features and additional

analysis routines to the goal selection and move selection phases should

yield a program with improved performance. Experimentation with this

50

improved program should produce additional insight into the capabilities

of a no look-ahead checker-playing program.

51

APPENDIX A

COMPUTER CHECKER GAMES

Game 1 Basic Checker Program

BLACK - Checker RED - Students COMMENTS

1. 12 - 16 24- 20 CENTER-CONTROL
2. 16- 24 Jump 28 - 20 Jump
3. 8 - 12 32 - 28 Single corner opening.
4. 4- 8 28 - 24
5. 11- 16 26 - 28 CENTER-CONTROL
6. 10 - 15 20 - 10 Jump Exchange for CENTER-

CONTROL
7. 5- 15 Jump 25- 21
8. 16 - 26 Jump 31 - 21 Jump
9. 12 - 16 21 - 11 Jump Exchange for CENTER-

CONTROL
10. 6- 16 Jump 30 - 25
11. 16 - 21 25 - 17 Jump Exchange for GET-KING

12. 13 - 21 Jump 24- 19
13. 7 - 12 19 - 11 Jump GET-KING: couldn't block.
14. 12 - 16 23- 19 CENTER-CONTROL
15. 8 - 12 19 - 15 CENTER-CONTROL
16. 16 - 20 35 - 30 GET-KING. Red sets a bridge.
17. 12 - 16 15- 10 CENTER-CONTROL.

(21-26 better)

At this point the game was discontinued. The program could not

move men out of danger, was over-directed toward CENTER-CONTROL,

and did not see the bridge opening kings row.

Game 2 Basic Checker Program

BLACK - Checker RED - Students COMMENTS

1. 10- 15 24- 10
2. 12 - 16 20 - 10 Jump Program did not block jump.
3. 5 - 15 Jump 25- 21 Exchange anyway.

52

BLACK - Checker RED - Students COMMENTS

4. 16- 20 29- 24
5. 11 - 16 21 - 11 Jump Exchange for CENTER-

CONTROL
6. 6 -16 24- 19
7. 7 - 12 19- 11 Program did not block.

8. 20- 24 28- 20 Jump
9. 16- 24 Jump 23- 18
10. 13- 17 19-14
11. 12 - 16 26 - 22
12. 8 - 12 33- 29 BLOCK now working.
13. 16- 21 29 - 19 2 - 7 better move for black.
14. 12 - 16 22 - 2 Jump Double jump for Red.
15. 2 - 7 19 - 15 From GET-KING, not KIL
16. 16 - 20 30 - 25 Red sets Black up.
17. 21 - 25 Jump 34 - 16 Jump Two-for-one shot for Red.
18. 1- 5 31- 26

Game 3 Basic Checker Program

,BLACK - Checker RED - Students COMMENTS

1. 10-15 24- 20
2. 5- 10 38 - 24 Black blocks jump.
3. 12 - 16 20 - 12 Jump Exchange for CENTER-

CONTROL.
4. 8 - 16 Jump 26- 22
5. 13- 17 22 - 12 Jump
6. 7 - 17 Jump 30 - 12 Jump Two-for-one shot for RED.
7. 10 - 15 24- 20 CENTER-CONTROL.

8. 15 - 25 Jump 29 - 13 Jump Two-for-one shot for RED.
9. 11 - 15 31 - 26
10. 6- 11 23- 29
11. 15- 20 23- 19
12. 20 - 25 32 - 28 BLACK moving for GET-K ING.
13. 2 - 6 12 - 7 Open bridge for RED.
14. 11- 15 19 - 11 Jump
15. 6- 26 7- 2 Two-for-one shot for BLACK.

RED gets a king.
16. 26- 31 24- 20
17. 1- 5 20 - 15
18. 4- 8 34- 30

53

r -- -...... - -

iI

BLACK - Checker RED - Students COMMENTS

19. 8 - 12 30 - 20 BLACK found only safe move.
20. 12-17 20- 16
21. 17- 22 16- 11
22. 22 - 26

The game was finished at this point. RED had a good material ad-

vantage, but BLACK did find a two-for-one shot at move 15. BLACK's

moves helped RED set up his two two-for-one shots.

Game 4 CHECKER1

BLACK - CHECKER1 RED - De Ford COMMENTS

1. 13-17 25- 20 CENTER-CONTROL

2. 10 - 15 20 - 10 jump Exchange for CENTER-
CONTROL

3. 6 - 14 jump 24- 19
4. 14- 24 ump 28- 20 Jump
5. 11 -15 20 - 10 jump Exchange for CENTER-

CONTROL
6. 5 - 15 Jump 29 - 25
7. 7 - 11 25 - 21 BLACK moves for GET-KING.

RED sets up a two-for-one
shot.

8. 17 - 25 Jump 30 - 10 jump Two-for-one shot for RED.
9. 1- 5 10- 6 BLACK gets KIL.
10. 2- 10 26- 21
11. 11 - 15 32- 28 CENTER-CONTROL.
12. 15 - 20 34 - 29 BLACK moves for GET-KING.
13. 20- 25 23 - 19 BLACK moves into bridge.
14. 8 - 18 31 - 26 GET-KING.
15. 12 - 17 26 - 22 GET-KING.
16. 3 - 8 22 - 12 jump BLACK could not block, so

caused an exchange.
17. 8 - 26 jump 29 - 21 jump BLACK gets two men. Could

not save other man.
18. 26 - 31 33 - 29 BLACK gets trapped in 31.

54

BLACK - CHECKER1 RED - DE Ford COMMENTS

* 19. 4- 8 28 - 24 GET-KING.
20. 8 - 12 24 - 20 BLACK moves for MOBILITY.
21. 12 - 17 21 - 16 BLACK gets trapped in 17.

Program changed to avoid edge.
22. 17 - 22 16- 11
23. 10 - 15 20 - 10 Jump BLACK sees two-for-one shot.
24. 5 - 23 Jump 11 - 6 Two-for-one. RED heads for

King.
25. 23 - 28 6 - 2 BLACK moves for GET-KING.

RED gets a king.
26. 28 - 33 29 - 25 BLACK gets a king.
27. 22 -26 25 - 20 CENTER-CONTROL.
28. 33- 29 20 - 16 MOBILITY.
29. 29 - 24 16 - 11 CENTER-CONTROL.

30. 13- 17 11 - 7 GET-KING.
31. 17- 21 7- 3 RED gets a king.
32. 21 - 25 3- 8 GET-KING.
33. 25- 29 2- 6
34. 29 - 34 8 - 12 BLACK gets a king.
35. 24- 20 6- 1 CENTER-CONTROL.
36. 34- 29 12 - 17 MOBILITY.
37. 20 - 16 17 - 22 BLACK moves to CAPTURE.
38. 26 - 30 35 - 25 Jump Moves to exchange kings since

not behind in material. (29 - 34
is better)

39. 2 9 - 21 Jump 1- 6
40. 31 - 35 6 1 10 BLACK gets a king.
41. 21 - 26 22 - 30 Jump BLACK moves to exchange

kings.

42. 35- 25 Jump 10- 5

The game ended when the program resorted to any safe move. Be-

cause no move would restrict RED's mobility, BLACK could not satisfy the

CAPTURE goal. This game was played for testing and experimenting pur-

poses. RED did not play to win in all situations.

55

Ft

Game 5 - CHECKER 1

BLACK - CHECKER1 RED - De Ford COMMENTS

1. 10- is 26- 21
2. 11 - 16 21 - 11 Jump Exchange for CENTER-

CONTROL.
3. 6 - 16 Jump 24- 19
4. 7 - 11 19 - 14 BLACK blocked jump.
5. S - 10 14 - 6 BLACK moves to exchange.
6. 2 - 10 jump 29- 24
7. 10 - 14 24 - 20 RED sets up a two-for-one shot.
8. 16 - 24 Jump 28 - 10 Jump RED gets two-for-one shot.
9. 11 - 15 33- 26 CENTER-CONTROL.
10. 13 - 17 31 - 26 GET-KING.
11. 17- 22 26- 21 GET-KING.
12. 14 - 19 24 - 20 GET-KING on opposite side.
13. 15 - 25 Jump 30 - 20 Jump RED forces exchange. BLACK

man on 19 in danger.
14. 19 - 24 21 - 16 BLACK moves man out of

danger.
15. 22 - 26 16- 11 GET-KING.
16. 412 - 16 20 - 12 Jump Exchange for CENTER-

CONTROL.

17. 8 - 16 28 - 12 Jump Blunder by BLACK gives RED
two men.

18. 3- 8 12- 7 SAFE-MOVE. RED goes for
king.

19. 8-12 7- 3 RED getsaking.

The game was discontinued. RED had a three-man material advantage.

A flaw in the static analysis routine caused the program to not recognize

the danger of move 17.

56

APPENDIX B

CHECKERi ON TIME-SHARING SYSTEM

Although no complete games were played using the time-sharing system,

some portions of games were played. Reference 9 gives detailed informa-

tion on the use of LISP 1. 5 on CP/CMS. The following is an example of one

terminal session after CHECKER 1 had been compiled and stored as part of

the LISP system.

login 18 7 5 g13 (LISP 1. 5 requires 512 K virtual memory)
ENTER PASSWORD:
npg
ENTER 4-DIGIT PROJECT NUMBER FOLLOWED BY 4-CHARACTER COST
CENTER CODE:
0530cs04
SHUTDOWN TIME FOR CP IS 1600 SHARP.. HAVE A NICE DAY.. DUFFY
READY AT 12.09.16 ON 11/19/71
CP
.i cms
CMS.. VERSION 01/21/71

cp link 18 75p 191 192 w (Link to private file)
ENTER PASSWORD:
checker

R; T=0. 03/0.19 12.09. 51

login 192
** 192 REPLACES P (191) **

R; T-0.02/0.14 12.09.57

lispl17 lisp117 (Loads and executes LISP system)
12.10.0.7 CHARDEF T
12.10.09 CHARDEF B
12.10.11 LINEND

12.10.12 LOAD LISP117 (CLEAR)
12.10.25 DEBUG
DEBUG ENTERED...

57

12.10.29 START LISPHOT LISP117
EXECUTION BEGINS...
LISP VERSION 117-0
CORE IMAGE: LISP117 SOSTAP P1
VALUE= 3

play0
PLAY NIL

WHAT BOARD WOULDYOULIKETOSTARTWITH?
SAYINITIALIFWEARETOSTARTAFRESHGAME
SAY DATA IF YOU WANT TO START WITH A PARTICULAR BOARD
INITIAL
HERE IS THE BOARD
((CURRENTBOARD. 0) (1. 1)(2. 1) (3. 1) (4. 1) (5. 1) (6. 1)
(7. 1) (8. 1) (10. 1) (11. 1) (12. 1) (13. 1) (14. 0) (15. 0)
(16. 0) (17. 0) (19. 0) (20. 0) (21. 0) (22. 0) (23. -1) (24. -1)
(25. -1) (26. -1) (28. -1) (29. -1) (30. -1) (31. -1) (32. -1)
(33. -1) (34. -1) (35. -1))

WHICHCOLOR WOULDYOULIKEMETOPLAY?
BLACK
HEREISTHEBOARD
((CURRENTBOARD . 0) (1 . 1) (2 . 1) (3 . 1) (4 . 1) (5 . 1) (6 . 1)
(7. 1) (8. 1) (10. 1) (11. 1) (12. 1) (13. 1) (14. 0) (15. 0)
(16. 0) (17. 0) (19. 0) (20. 0) (21. 0) 122. 0) (23.-1) (24.-1)
(25. -1) (26. -1) (28 . -1) (29. -1) (30. -1) (31. -1) (32. -1)
(33. -1) (34. -1) (35. -1))
MY GOALLISTIS_:
(SHOT KIL CENTERCONTROL EXCHANGE CAPTURE GETKING
MOBILITY)

I_EVALUATETHEBOARD:
(O 07 0)

MY MOVE IS:
(MOVEPIECE 1 10. 15)

((CURRENTBOARD . 1) (1. 1) (2. 1) (3. 1) (4. 1) (5. 1) (6. 1)
(7. 1) (8. 1) (10. 0) (11. 1) (12. 1) (13. 1) (14. 0) (15. 1)
(16. 0) (17. 0) (19. 0) (20. 0) (21. 0) (22. 0) (23. -1) (24. -1)
(25.-1) (26.-1) (28.-1) (29.-1) (30.-1) (31.-1) (32.-1)
(33. -1) (34. -1) (35. -1))

IT'SYOURMOVE

58

(MOVE 26 21)
HEREISTHE BOARD
((CURRENTBOARD. 2) (1. 1) (2. 1) (3. 1) (4. 1) (5. 1)
(6.1) (7.1) (8.1) (10. 0) (11.1) (12.1) (13. 1) (14. 0)
(15. 1) 16. 0) (17. 0) (19. 0) (20. 0) (21.-1) (22. 0) (23.-1)
(24. -1) (25. -1) (26. 0) (28. -1) (29.-1) (30. -1) (31. -1)
(32. -1) (33. -1) (34. -1) (35. -1))

MY GOAL LIST IS :
(SHOT KIL CENTERCONTROL EXCHANGE CAPTURE GET_KING MOBILITY)

IEVALUATETHE BOARD:
(0040)

MY MOVEIS:
(MOVEPIECE 1 11. 16)

((CURRENTBOARD. 3) (1. 1) (2. 1) (3. 1) (4. 1) (5. 1)
(6. 1) (7. 1) (8. 1) (10. 0) (11. 0) (12. 1) (13. 1) (14. 0)
(15. 1) (16. 1) (17. 0) (19. 0) (20. 0) (21.-1) (22. 0) (23.-I)
(24.-1) (25.-i) (26. 0) (28.-i) (29.-1) (30.-1) (31.-I)
(32. -1) (33. -1) (34. -1) (35.-')j

IT'SYOURMOVE

aI QUIT)

PRESENTBOARD

((CURRENTBOARD .3) (1. 1) (2. 1) (3. 1) (4. 1) (5. 1) (6. 1)
(7. 1) (8. 1) (10. 0) (1.0) (12. 1) (13. 1) (14. 0) (15. 1)
(16. 1) (17. 0) (19. 0) (20. 0) (21.-1) (22. 0) (23.-1) (24.-1)
(25.-1) (26. 3) (28.-1) (29.-1) (30.-1) (31.-1) (32.-1)
(33 . -1) (34 . -1) (35 . -1))

59

APPENDIX C

COMPUTATION OF CENTER CONTROL AND WEAK SIDE

The value of center control is an integer which indicates the relative

control of the center for the two players. The value is computed by

multiplying the value of each piece occupying one of the squares 10, 11,

12, 15, 16, 17, 19, 20, 21, 24, 25, 26 by the center control value of the

square, and summing the products. Figure 8 shows the center control

values of the squares. The values assigned to the pieces on the checker-

board are:

PIECE VALUE

BLACK MAN 1
BLACK KING 2
RED MAN -1
RED KING -2

The sign of the center control value indicates which player has the

advantage (minus for red, plus for black). The magnitude of the value

indicates the magnitude of the advantage. If the center control value is

zero, neither player has a center control advantage.

As an example computation, consider a board position with black

men on squares 5, 10, 12, 15, 17, and 21, red men on squares 20, 25,

26, 29, and 31. The men on squares 5, 29, and 31 do not contribute to

center control. The value of center control is computed as follows:

60

SQUARE SQUARE VALUE PIECE VALUE PRODUCT

10 1 1 1
11 1 0 0
12 1 1 1

s5 4 1 4
16 4 0 0
17 1 1 1
19 1 0 0
20 4 -1 -4
21 4 1 4
24 1 0 0
25 1 -1 -1
26 1 -1 -1

CENTER CONTROL = S

When the move gernerator for GET-KING cannot move a man directly

into kings row, it attempts to determine the best move to make to pene-

trate the opponent's kings row defense. The weak side is determined by

summing the defensive values assigned to each square that the opponent

occupies for the two board quadrants adjacent to kings row. The side with

the minimum value is the weak side.

Figure 9 shows the values assigned to each square. These values

were derived by analysis of various board configurations and by consulting

the literature on the game of checkers.

61

i•BLACK

2 3 WHITE

-1 2 0 -1 0 3 4 1

Figure 1. The Move Tree and Minimaxing.

-BLACK

2-1 RED

ii
3 5 4 9 5 6 7-1 8BLACK

1011 12 13 14 5 16 17 18 19 20 21 22 2324 5 26
5 3 0 9 1 0 -1 2 0 -6 -2 -1 -5

Figure 2. Alpha-Beta Tree Pruning

62

-w imp .1.1

BLACK

1 2 NN 3 4

5 7 8

1415 16 17 2

19 20 .21 22'

23 24 25 26

28' 29 30 31

32~~ 33343

RED

Figure 4. Moadifid Checkerboard, Numbering System.

6 763

Input board position
Preanalysis of current board configuration

Determine stage of game.

Measure CENTER-CONTROL, MATERIAL
BALANCE, and MOBILITY.

Compute ADVANTAGE
Goal eneration and ordering

Is a jump available? eturn goal JUMP and jump squares

Assign priorities to CENTER-CONTROL
MOBILITY, EXCHANGE, CAPTURE, GET-KING,
based on stage and measurements of features
of the board position.

Order goals with respect to priorities.

Add SHOT, KIL to goal list]

Return goal list and vector Q•I .!

To move generation

Figure 5. Pre-analysis and Goal Generation.

64

Input: Goal list and Vector

Is JUMP Execute

on the + the

goal list? jump

Does the move generator
associated with the first + Execute

goal on the goal list return the

a move? move

Remove the first
goal from the goal

list

empty? + a safe move return +
Sa move?

iDoe the M.G. for
Sa Usacrifice return

Sa mnove?

resign

Figure 6. Move Generation

65

GOAL MOVES CONSIDERED CHOICE CRITERION

BLOCK All moves into block square. First with no threat.

All moves for threatened
man. irt with no threat.

All moves into squares
adjacent to the block
square. First to cause exchange.

SHOT Pattern recognition.

KIL Pattern recognition.

CENTER-CONTROL All moves into Center Move resulting in best

Control and Supporting center control value.
squares.

MOBILITY All moves Move resulting in best
mobility.

ET-KING All moves into kings row. First to get a king.

All moves on the opponent's Move putting man
weak side. closest to kings row

All moves on the opponent's Move putting man
strong side. closest to kings row.

CAPTURE All moves. First placing enemy in
danger.

All moves. Move causing minimum
enemy mobility.

EXCHANGE All moves. First causing exchange.

SAFE-MOVE All moves. First safe move.

SACRIFICE All moves. First sacrifice causing
mobility greater than
zero.

Figure 7. Comparison of Move Generators.

66

4 4\ 1

14 4

Figure 8. Center Control Square Values.

5 7 7 6

4 ', 4 4 ý

12 N 2 2

2 2 21

34 4 4

8 10 1

Figure 9. Defensive Value Assignments.

67

IUST OF REFERENCES

1. Shannon, C. E., "Programming a Digital Computer for Playing Chess ,"
Philosophy Magazine, v. 41, p. 356-375, March 1950.

2. Turing, A. M., Faster Than Thought,p. 288-295, Putman, 1953.

3. Bernstein, A., Roberts, M. DE. V., Arbuekle, T., and Belsky, M. A.,
"A Chess Playing Program For The IBM-704 Computer," Proc.
1958 Western joint Computer Conference, p. 157-159.

4. Newell, A. , Simon, H. , and Shaw, J. C. , "Chess Playing Programs
And The Problem of Complexity," IBM Journal of Research and
Development, v. 2, p. 320-355, October 1958.

5. Greenblatt, R. D., Eastlake, D. E. III, and Crocker, S. D.,
"The Greenblatt Chess Program," Fall joint Computer Conference,
1967, p. 801, 810.

6. Samuel, A. L., "Some Studies In Machine Learning Using The Game
of Checkers," Computers and Thought, p. 71-105,
1963.

7. McCarthy, J., and others, LISP 1.5 Programmer's Manual, The
MIT Press, 1962.

8. Weissman, C. , (LISP 1. 5 Primer(by(Clark Weissman))), Dickenson,
1968.

9. Blair, F. W., and others, Design and Development Document for
LISP on Several S/360 Operating Systems Yorktown Heights,
New York.

68

